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Abstract
In recent years, researchers proposed a variety of deep learning models for wind power 
forecasting. These models predict the wind power generation of wind farms or entire 
regions more accurately than traditional machine learning algorithms or physical models. 
However, latest research has shown that deep learning models can often be manipulated 
by adversarial attacks. Since wind power forecasts are essential for the stability of modern 
power systems, it is important to protect them from this threat. In this work, we investi-
gate the vulnerability of two different forecasting models to targeted, semi-targeted, and 
untargeted adversarial attacks. We consider a long short-term memory (LSTM) network 
for predicting the power generation of individual wind farms and a convolutional neural 
network (CNN) for forecasting the wind power generation throughout Germany. Moreo-
ver, we propose the Total Adversarial Robustness Score (TARS), an evaluation metric for 
quantifying the robustness of regression models to targeted and semi-targeted adversarial 
attacks. It assesses the impact of attacks on the model’s performance, as well as the extent 
to which the attacker’s goal was achieved, by assigning a score between 0 (very vulnerable) 
and 1 (very robust). In our experiments, the LSTM forecasting model was fairly robust 
and achieved a TARS value of over 0.78 for all adversarial attacks investigated. The CNN 
forecasting model only achieved TARS values below 0.10 when trained ordinarily, and was 
thus very vulnerable. Yet, its robustness could be significantly improved by adversarial 
training, which always resulted in a TARS above 0.46.

Keywords Adversarial machine learning · Windpower forecasting · Robustness 
evaluation · Adversarial training · Time series forecasting · Deep learning

1 Introduction

Renewable energy forecasting has a significant impact on the planning, management, 
and operation of power systems (Wang et  al., 2019). Grid operators and power plants 
require accurate forecasts of renewable energy output to ensure grid reliability and perma-
nency, and to reduce the risks and costs of energy markets and power systems (Alkhayat 
& Mehmood, 2021). Over the past few years, the share of renewable energies in the 
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electricity mix has risen steadily. For example, the total installed wind energy capacity in 
Germany increased from 26.9 gigawatts in 2010 to 63.9 gigawatts in 2021 (Umweltbun-
desamt, 2022). Moreover, wind energy already covered about 20 percent of the German 
gross electricity consumption in 2021, making it the most important energy carrier in the 
German electricity mix. This development poses a challenge for energy providers. Wind 
power generation is difficult to predict due to the randomness, volatility, and intermittency 
of wind. Improving the accuracy of wind power forecasts is therefore of high importance.

In recent years, Deep Learning (DL) methods have proven to be particularly feasible 
and effective for accurate renewable energy forecasting (Wang et  al., 2019; Alkhayat & 
Mehmood, 2021; Aslam et  al., 2021). Nevertheless, power systems are a critical infra-
structure that can be targeted by criminal, terrorist, or military attacks. Hence, not only 
the accuracy of wind power forecasts is relevant, but also their attack resistance. Latest 
research has shown that DL methods are often vulnerable to adversarial attacks (Szegedy 
et  al., 2013; Goodfellow et  al., 2014). The use of DL thus poses dangers and opens up 
new attack opportunities for assailants. Adversarial attacks slightly perturb the input data 
of Machine Learning (ML) models to falsify their predictions. In particular, DL algo-
rithms that obtain input data from safety-critical interfaces are exposed to this threat. Wind 
power forecasting models often use satellite imagery or weather forecasts as input features. 
Such data frequently comes from publicly available data sources which can be corrupted 
by hackers. Even data sources that are not public can become the target of attacks. For 
example, there is a risk that energy data markets (Goncalves et al., 2020) will be abused 
by attackers in the future. Attackers could use these markets to inject tampered data into 
an ML application and thereby manipulate its predictions. If such manipulations remain 
undetected and if forecasting models are not adequately protected, the consequences could 
be fatal. Attacks on wind power forecasts could compromise forecast quality, resulting in 
high costs for energy consumers and energy providers. Even worse, attackers could also 
manipulate the forecasts to gain economic advantages or destabilize energy systems.

Consequently, there is a growing interest among researchers to study the effects of 
adversarial attacks in the context of time series data. In particular, the vulnerability of 
DL methods for time series classification has been studied by various researchers (Fawaz 
et al., 2019; Abdu-Aguye et al., 2020; Rathore et al., 2020). They considered adversarial 
attacks such as the Fast Gradient Sign Method (Goodfellow et  al., 2014) and the Basic 
Iterative Method (Kurakin et  al., 2018) to cause misclassification of time series data. 
More advanced techniques such as the Adversarial Transformation Network (Karim et al., 
2020; Harford et al., 2020) have also been proposed for this purpose. However, adversarial 
attacks on ML algorithms are also highly relevant for regression tasks such as time series 
forecasting (Alfeld et al., 2016). With respect to DL approaches, Nguyen and Raff (2018) 
examined the impact of adversarial attacks on regression neural networks and proposed a 
stability-inducing, regularization-based defense against these attacks. Nevertheless, adver-
sarial attacks for regression tasks still require additional research, as the number of contri-
butions on this topic is yet relatively limited.

With the rising adoption of DL in the power industry, the analysis and detection of 
adversarial attacks is becoming a growing concern. Since energy systems are critical 
infrastructures, the security of DL algorithms in this domain is of particular importance. 
According to Richter et al. (2022), the DL models deployed in this field can become tar-
gets of attacks across the entire value chain. In this regard, an important topic of inter-
est is the protection of grid infrastructures and smart grids against adversarial attacks. 
The survey of Cui et  al. (2020) shows that various papers related to false data injec-
tion attacks have already been published in this sector. There also exists research that 
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investigates the threat of adversarial attacks designed to fool anomaly detection methods 
(Ahmadian et al., 2018; Sayghe et al., 2020). Other papers cover grid-related topics such 
as utilizing adversarial attacks for the purpose of energy theft in energy management 
systems (Marulli & Visaggio, 2019) or attacks on event cause analysis (Niazazari & 
Livani, 2020). Another important research direction in the energy domain are adversar-
ial attacks on power forecasts. Here, Zhou et al. (2019) have shown that the prediction 
accuracy of load flow forecasts can be degraded by stealthy adversarial attacks. Fur-
ther, Chen et al. (2019) have analyzed how load flow forecasts can be biased in a direc-
tion advantageous to the attacker. Still other researchers have focused on attacks against 
renewables. For instance, Tang et al. (2021) studied the impact of untargeted adversarial 
attacks on solar power forecasts.

In this work, the focus is on wind power forecasting, due to its rising importance 
in power systems. Recently, DL models have been increasingly proposed by research-
ers for this task (Alkhayat & Mehmood, 2021; Wu et  al., 2022). However, very little 
research has been done on the robustness of these models to adversarial attacks. A nota-
ble contribution was made by Zhang et al. (2020), who approached the problem of false 
data injection attacks from a technical point of view. In doing so, they examined the 
impact of untargeted adversarial attacks on a variety of regression models, including 
support vector machines, fully connected neural networks, and quantile regression neu-
ral networks. In contrast to previous studies, the focus of this work is to investigate 
targeted adversarial attacks on DL models for wind power forecasting. The goal of tar-
geted adversarial attacks is to manipulate the forecasting model in such a way that the 
predicted values follow a specific forecast pattern desired by the attacker, see Fig. 1.

As discussed previously, only untargeted and semi-targeted attacks on DL-based 
forecasting models have been studied so far. In the case of wind power forecasts, how-
ever, targeted adversarial attacks pose a much greater threat. Such attacks give assail-
ants the opportunity to specifically influence forecast behavior. Thus, they are able to 
affect energy markets or disrupt grid operations. Especially in regression tasks, evaluat-
ing the success of targeted adversarial attacks is non-trivial. Therefore, it is important 
to have appropriate evaluation metrics for assessing the robustness of models to such 
attacks. In this work, we address these problems and offer the following contributions: 

Fig. 1  Illustration of a targeted adversarial attack on a time series forecasting model. The adversary manip-
ulates the input data by adding a small perturbation. This perturbation causes the model’s prediction (solid) 
to no longer approximate the ground truth (dashed), but to follow a particular forecast pattern (dash-dotted) 
defined by the attacker
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 (C1) We propose a taxonomy for adversarial attacks in the regression setting that catego-
rizes them into untargeted, semi-targeted, and targeted attacks.

 (C2) We present an evaluation metric for assessing the robustness of regression models to 
targeted and semi-targeted adversarial attacks. This evaluation metric measures not 
only the impact of the attacks on the performance of the model, but also the extent to 
which the attacker’s goal was achieved.

 (C3) We investigate the robustness of two different DL models for wind power forecast-
ing, each with its own use case. We find that CNN models for predicting the wind 
power generation throughout Germany based on wind speed forecasts in the form of 
weather maps are very susceptible to adversarial attacks, whereas LSTM models for 
predicting the power generation of wind farms based on wind speed forecasts in the 
form of time series are fairly robust.

 (C4) We examine the effects of adversarial training and show that it significantly increases 
the robustness of the CNN forecasting model, while having only a small effect on the 
robustness of the LSTM forecasting model in the respective applications.

This paper is organized as follows. In Sect.  2, we present the underlying methodology 
behind adversarial attacks and adversarial training. Moreover, an evaluation metric for 
quantifying the adversarial robustness of regression models is proposed. Next, two differ-
ent DL-based wind power forecasting models are investigated in terms of their robustness 
to adversarial attacks. First, the experimental setup is presented in Sect. 3. Subsequently, 
the results of the study are presented in Sect. 4. In Sect. 5, a discussion of the results fol-
lows and several directions for future work are pointed out. Finally, we conclude with a 
summary of this contribution in Sect. 6.

2  Methodology

2.1  Adversarial attacks

Adversarial attacks refer to attacks on ML algorithms that perturb the input data in order 
to manipulate the model’s prediction. In the process, the attacker modifies the input data 
slightly and carefully, so that the perturbations remain undetected by humans and anomaly 
detection methods. The techniques for generating adversarial attacks can be taxonomically 
categorized according to the attacker’s goal and the prior knowledge of the attacker (Xu 
et al., 2020). Whereas white-box adversarial attacks require complete knowledge about the 
model architecture and the trained model parameters, gray-box methods assume only lim-
ited knowledge of the attacker, e.g., about confidence levels of the model. Black-box meth-
ods, on the other hand, suppose that the attacker has no knowledge about the underlying 
model. However, it is commonly assumed that the attacker is able to communicate with the 
model.

Regarding the attacker’s goal, a distinction is made between untargeted and targeted 
attacks in classification tasks. The goal of targeted attacks is to fool the model into classify-
ing the input as a particular class desired by the adversary. In contrast, untargeted attacks 
simply aim for a misclassification of the perturbed data. The exact class predicted by the 
model is not important. For regression tasks, though, the output of ML algorithms is not 
categorical, but represents continuous variables. Thus, this categorization of adversarial 
attacks cannot be simply transferred to regression problems.
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2.1.1  Goals of adversarial attacks in regression tasks

As contribution (C1), we propose to taxonomically divide the attacker’s goal into three 
categories in the regression setting: untargeted attacks, semi-targeted attacks, and targeted 
attacks. Untargeted attacks attempt to perturb an input data point x ∈ ℝ

d in such a way 
that the prediction quality of a model f� , with parameters � ∈ ℝ

p , is degraded to the maxi-
mum in terms of a loss function L . The objective that the attacker wants to optimize is as 
follows:

Here, y ∈ ℝ
n is the ground truth value associated with the input data point x. The perturba-

tion added to x is denoted by � , and S ⊆ ℝ
d represents the set of allowed perturbations. An 

example of an untargeted adversarial attack on a univariate time series forecast is shown in 
Fig. 2.

In the case of untargeted attacks, the attacker has no control over the magnitude of the 
degradation. Thus, he risks that the attack will result in an unrealistic prediction that can 
easily be detected as erroneous.

To avoid this, attackers also have the option of launching semi-targeted attacks on 
regression models. We define semi-targeted attacks as perturbations that cause the mod-
el’s predictions to fall within certain boundaries. These boundaries are specified by the 
attacker. Thus, the perturbations aim at degrading the model’s performance, while satisfy-
ing certain constraints:

Here, the inequality constraints Ci and the equality constraints Cj describe the attacker’s 
desired restrictions on the behavior of the manipulated prediction f�(x + �) . For example, 
the attacker may attempt to degrade the prediction quality only to a certain degree so that 

(1)max
�∈S

L
(
f�(x + �), y

)

(2)

max
�∈S

L
(
f�(x + �), y

)

s.t. Ci

(
f�(x + �)

)
≤ 0 for i = 1,… , k

Cj

(
f�(x + �)

)
= 0 for j = 1,… , l

Fig. 2  Example of an untargeted adversarial attack. While the original prediction (dotted) approximates the 
ground truth (dashed) very well, the attacked prediction (solid) deviates strongly from the ground truth
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the degradation remains inconspicuous. Another example are perturbations that cause the 
prediction to be distorted as much as possible in a certain direction, e.g., to either increase 
or decrease the predicted values, as was studied by Chen et al. (2019). In this work, we 
study semi-targeted adversarial attacks with lower and upper bound constraints. Here, the 
attacker specifies a lower bound a ∈ ℝ

n and an upper bound b ∈ ℝ
n . The attacker then 

attempts to perturb the input data such that the attacked prediction ŷadv = f𝜃(x + 𝛿) falls 
within the region enclosed by the lower and upper bound, i.e., ai ≤ ŷadv,i ≤ bi holds for all 
i = 1,… , n . In the example in Fig. 3, the constraints require the prediction ŷadv to only take 
values between 0.5 and 0.7.

Finally, regression models can also be manipulated by attackers in a targeted fashion. 
Targeted attacks try to perturb the input data in such a way that the model’s prediction 
comes as close as possible to an adversarial target yadv ∈ ℝ

n . Thus, the attacker aims for 
the following optimization objective:

Depending on the application, different target values may be relevant for the attacker. For 
instance, an attacker could try to manipulate wind power forecasts in order to influence 
energy markets and gain economic advantages. An example of a targeted adversarial attack 
is shown in Fig. 4.

In this paper, two methods for generating adversarial attacks are considered. The focus 
is on untargeted, semi-targeted, and targeted adversarial attacks using the Projected Gra-
dient Descent (PGD) attack. In addition, we also examine untargeted adversarial noise 
attacks, which are rather weak attacks but serve as a baseline. The two methods are 
described below.

2.1.2  Adversarial noise attack

A very simple form of untargeted adversarial attacks are adversarial noise attacks, which 
were originally introduced by Rauber et al. (2017). Noise attacks are applicable to both clas-
sification tasks and regression tasks. They perturb the input data by adding random noise, 

(3)min
�∈S

L
(
f�(x + �), yadv

)

Fig. 3  Example of a semi-targeted adversarial attack. While the original prediction (dotted) approximates 
the ground truth (dashed) very well, the attacked prediction (solid) lies in the area defined by the attacker’s 
constraints (dash-dotted)
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commonly Gaussian noise or uniform noise. In the process, the perturbation is normalized 
and rescaled to the desired size, e.g., with respect to the L∞ norm. In addition, the perturbed 
samples need to be clipped afterwards so that all values are within the valid lower and upper 
bounds of the input data (Rauber & Bethge, 2020). Noise attacks require no prior knowledge 
of the model and thus represent black-box attacks. In order to increase the success rate of the 
attack, repeated noise attacks can be used. Here, noise is repeatedly sampled, thus generating 
several candidate noise terms for the attack. Then the effects of the different noise terms on 
the model’s performance are evaluated. Finally, the noise term that most degrades the model’s 
performance is selected as the perturbation.

2.1.3  Projected gradient descent (PGD) attack

According to Carlini et al. (2019), by far the most powerful attack algorithms are those that 
use gradient-based optimization. They extract a significant amount of information from the 
model by using the gradients of a loss function to generate adversarial attacks. One such opti-
mization-based attack commonly used in the literature is PGD, which was originally proposed 
by Madry et al. (2017). PGD attempts to iteratively improve the perturbation of an input, while 
always ensuring that the magnitude of the perturbation is within a given boundary. To do this, 
PGD exploits the model gradients between the input and an adversarial loss function. Thus, it 
is a white-box attack and applicable for untargeted, semi-targeted as well as targeted attacks.

In the case of untargeted attacks, PGD attempts to maximize the deviation between the 
model’s prediction and the ground truth (Kurakin et al., 2018):

On the other hand, in targeted attacks, PGD tries to minimize the mismatch between the 
model’s prediction and the attacker’s target (Kurakin et al., 2018):

(4)x
(0)

adv
= x, x

(t+1)

adv
= Clip x,�

{
x
(t)

adv
+ � sign

(
∇

x
(t)

adv

L

(
f�

(
x
(t)

adv

)
, y
))}

(5)x
(0)

adv
= x, x

(t+1)

adv
= Clip x,�

{
x
(t)

adv
− � sign

(
∇

x
(t)

adv

L

(
f�

(
x
(t)

adv

)
, yadv

))}

Fig. 4  Example of a targeted adversarial attack. While the original prediction (dotted) almost matches the 
ground truth (dashed), the attacked prediction (solid) approximates the attacker’s target (dash-dotted)
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Here � is the update size per step and x(t)
adv

 denotes the perturbed input after the tth optimiza-
tion step. Feature-wise clipping of the perturbed input using the Clip x,� function ensures 
that the result is in the �-neighborhood of the original input x, with respect to the L∞ norm. 
The parameter � corresponds to the maximum perturbation magnitude specified by the 
attacker. It should be noted that Madry et al. (2017) proposed to add a random initialization 
to this algorithm. However, in the following experiments we always use PGD without a 
random initialization, since it did not have a significant effect on the results in preliminary 
tests.

For applying PGD to semi-targeted attacks, we propose to add a weighted penalty term 
to the loss function, which penalizes the violation of the attacker’s constraints. In the case 
of semi-targeted attacks with lower and upper bound constraints, PGD then attempts to 
maximize the mismatch between the model’s prediction and the ground truth, while at the 
same time minimizing the deviation between the prediction and the area enclosed by the 
lower and upper bounds:

Here, L[a,b]

(
f�

(
x
(t)

adv

))
 is a loss function that serves as the penalty term. It measures the 

degree of deviation between the prediction and the area enclosed by the lower bound a and 
the upper bound b. The parameter � is the corresponding penalty weight, which was always 
chosen as 1000 in this work.

2.2  Adversarial training

Several techniques exist to protect ML algorithms from adversarial attacks (Qiu et al., 2019; 
Xu et al., 2020; Akhtar et al., 2021). For example, perturbed data points can be identified 
and eliminated at an early stage using detection methods (Metzen et  al., 2017). Another 
approach is to increase a model’s robustness. A robust model is characterized by the fact 
that it is stable to small perturbations of its inputs (Szegedy et al., 2013). In a regression 
setting, this means that minor changes in the input do not lead to significant changes in the 
model’s prediction. A commonly used technique in the literature is to increase the robust-
ness of a model by adversarial training (Goodfellow et al., 2014). During adversarial train-
ing, the model is trained on perturbed training data. Thus, it automatically becomes more 
robust to the type of adversarial attacks that were used to generate the perturbations in the 
training phase. In each training iteration, the perturbed data points are newly generated 
from the original training data. This ensures that the perturbations are specifically tailored 
to the model weights of each training iteration. Then the model weights � ∈ ℝ

p are selected 
by solving the following optimization problem (Madry et al., 2017):

Here, (x, y) ∼ D represents training data sampled from the underlying data distribution 
D . The inner maximization problem is to find the worst-case perturbations for the given 
model weights, which can be approximately solved by generating adversarial attacks with 

(6)

x
(0)

adv
= x,

x
(t+1)

adv
= Clip x,�

{
x
(t)

adv
+ � sign

(
∇

x
(t)

adv

L�

(
f�

(
x
(t)

adv

)
, y, a, b

))}
,

L�

(
f�

(
x
(t)

adv

)
, y, a, b

)
= L

(
f�

(
x
(t)

adv

)
, y
)
− � ⋅ L[a,b]

(
f�

(
x
(t)

adv

))

(7)min
�

�(x,y)∼D

[
max
�∈S

L
(
f�(x + �), y

)]
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the PGD attack (Madry et al., 2017). On the other hand, the outer minimization consists in 
training a model that is robust to these worst-case perturbations. This can be solved by the 
standard training procedure.

2.3  Adversarial robustness scores

In order to evaluate the security of DL models, it is essential to quantify their robustness to 
adversarial attacks. In classification tasks, the success of an attack can be measured quite 
easily using the model accuracy or the attack success rate (Carlini et al., 2019). However, 
assessing the robustness of regression models is non-trivial, especially in the case of tar-
geted and semi-targeted attacks. Therefore, as contribution (C2), we present below an eval-
uation metric for quantifying the robustness of regression models to targeted adversarial 
attacks and semi-targeted adversarial attacks with lower and upper bound constraints. From 
the attacker’s perspective, the success of a targeted attack can be measured by the devia-
tion between the model’s prediction and the adversarial target. In the case of semi-targeted 
attacks, it is important for the attacker that the prediction satisfies his constraints. But from 
the victim’s point of view, this does not cover all possible harms. An attack may be unsuc-
cessful for the attacker because the model’s prediction is still far from the adversarial target 
or does not satisfy the attacker’s constraints. But if the attack significantly degrades the 
model’s performance, it still has a considerable lack of robustness. Therefore, we propose 
an evaluation metric to quantify the robustness of regression models specifically for tar-
geted and semi-targeted attacks.

In the following, we use the Root Mean Square Error (RMSE) to measure the deviation 
between a model’s prediction ŷ = f𝜃(x) ∈ ℝ

n and the associated ground truth y ∈ ℝ
n:

The RMSE has the benefit of penalizing large errors more. However, it is possible to 
replace the RMSE in the scores defined below (DRS, PRS, and TARS) with any other non-
negative cost function L . For example, the Mean Squared Error (MSE) or Mean Absolute 
Error (MAE) are also very common cost functions for regression problems.

To quantify the extent to which a prediction ŷ ∈ ℝ
n satisfies the lower and upper bound 

constraints of a semi-targeted attack, we define the following variation of the RMSE, the 
Bounded Root Mean Square Error (BRMSE):

Here a ∈ ℝ
n denotes the lower bound, b ∈ ℝ

n the upper bound and � the indicator 
function.1 If a prediction ŷ satisfies the constraints, i.e., if ai ≤ ŷi ≤ bi holds for all 
i = 1,… , n , then the BRMSE [a,b] is zero. If an element ŷi of the prediction is below the 
lower bound, i.e. if ŷi < ai holds, the BRMSE [a,b] accounts only for the deviation between 
ŷi and ai . On the other hand, if an element ŷi is above the upper bound, i.e. if ŷi > bi holds, 
the BRMSE [a,b] only considers the deviation between ŷi and bi.

(8)RMSE (ŷ, y) =

(
1

n

n∑

i=1

(
ŷi − yi

)2
) 1

2

(9)BRMSE [a,b](ŷ) =

(
1

n

n∑

i=1

(
𝜒{ŷi<ai}

⋅

(
ŷi − ai

)2
+ 𝜒{bi<ŷi}

⋅

(
ŷi − bi

)2)
) 1

2

1 The indicator function 𝜒{x<y} takes the value 1 if x < y holds and the value 0 if x ≥ y.
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The proposed score for evaluating the robustness to targeted and semi-targeted attacks 
is composed of two subscores. These subscores respectively measure the robustness of 
the model’s performance and its robustness to prediction deformations. The scores are 
described in more detail below.

2.3.1  Performance robustness

The first score is the Performance Robustness Score (PRS). The PRS measures how 
severely a model’s performance deteriorates relative to its original performance when 
under attack:

Here, � is a small constant value to avoid dividing by zero. In the following we always 
select � = 1 ⋅ 10−10 . The PRS ranges from 0 to 1. If the deviation between the model’s 
prediction and the ground truth remains unchanged during the attack or even decreases, the 
attack has no negative impact on the model’s performance. In this case, the performance is 
considered robust to the attack and the PRS takes the value 1. However, if RMSE

(
ŷadv, y

)
 

increases relative to RMSE (ŷ, y) , the PRS converges to zero and the performance 
robustness decreases exponentially, see Fig. 10 in Appendix A.

2.3.2  Deformation robustness

We define the Deformation Robustness Score (DRS) to quantify the success of an attacker 
in case of targeted and semi-targeted attacks. For targeted attacks, the DRS measures how 
close a model’s prediction moves towards the adversarial target due to an attack:

The DRS also ranges from 0 to 1. If the DRS is equal to 1, the attack has failed from the 
attacker’s point of view. This is the case if the model’s prediction has remained unchanged 
or the deviation between the prediction and the adversarial target has increased as a result 
of the attack. However, if RMSE

(
ŷadv, yadv

)
 decreases relative to RMSE

(
ŷ, yadv

)
 , the 

DRS converges to zero and the deformation robustness drops exponentially, see Fig. 11 in 
Appendix A.

Analogously, the DRS can also be defined for semi-targeted attacks with lower and 
upper bound constraints:

Here, the DRS measures the extent to which the deviation between the model’s prediction 
and the area enclosed by the lower and upper bound has decreased as a result of the attack.

(10)PRS
(
ŷ, ŷadv, y

)
= min

(
exp

(
1 −

RMSE
(
ŷadv, y

)

RMSE (ŷ, y) + 𝛾

)
, 1

)

(11)DRS
(
ŷ, ŷadv, yadv

)
= min

(
exp

(
1 −

RMSE
(
ŷ, yadv

)

RMSE
(
ŷadv, yadv

)
+ 𝛾

)
, 1

)

(12)DRS
(
ŷ, ŷadv, a, b

)
= min

(
exp

(
1 −

BRMSE [a,b](ŷ)

BRMSE [a,b]

(
ŷadv

)
+ 𝛾

)
, 1

)
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2.3.3  Total adversarial robustness

Neither the PRS nor the DRS individually provide a thorough assessment of a regres-
sion model’s robustness to targeted or semi-targeted attacks. While the PRS only captures 
the impact of an attack on the model’s performance, the DRS solely measures how the 
attack affected the deviation between the model’s prediction and the attacker’s target or the 
attacker’s constraints. From the victim’s perspective, a model is only considered robust if 
it has both a high PRS and a high DRS. We therefore define the Total Adversarial Robust-
ness Score (TARS), which combines the PRS and the DRS into one score. Thus, the TARS 
provides a comprehensive measure of a model’s robustness:

Note that the TARS is inspired by the F� score and uses a parameter � ∈ ℝ
+ . In the 

case � = 1 , the TARS is the harmonic mean between DRS and PRS. Depending on the 
application, � can be adjusted such that the DRS is considered to be � times as important 
as the PRS. Thus, for 𝛽 > 1 , deformation robustness is weighted higher, whereas for 𝛽 < 1 , 
performance robustness is given more weight. Compared to weighted arithmetic averaging, 
the TARS has the advantage that a model’s robustness is only considered high if it has 
both high performance robustness and high deformation robustness. However, if either 
the PRS or the DRS is very low, the TARS also quantifies the robustness of the model 
as being poor, see Fig. 12 in Appendix A. We recommend calculating the TARS for all 
relevant adversarial targets and constraints individually. This allows a better assessment of 
which targets or constraints the model is particularly susceptible to. Also, a threat analysis 
(Bitton et  al., 2023) should be conducted in advance for the use case of interest. In this 
way, various important attack scenarios and the associated targets and constraints of an 
attacker can be identified.

3  Experimental setup

As contribution (C3), we investigated the robustness of two DL-based wind power fore-
casting models to adversarial attacks. Besides a forecasting model for individual wind 
farms, we also considered a forecasting model for predicting the wind power generation 
in the whole of Germany. Furthermore, as contribution (C4), we examined to what extent 
adversarial training can increase the robustness of the two models. In the following, the 
experimental setup is described in more detail.

3.1  Data

To predict the power generation of individual wind farms, we used the wind power 
measurements and wind speed predictions of the 10 different wind farms from the publicly 
available GEFCom2014 wind forecasting dataset (Hong et  al., 2016). The wind speed 
predictions were generated for the locations of the wind farms and are univariate time 
series. A separate LSTM model for wind power forecasting was trained for each of the 10 
wind farms. For training and hyperparameter tuning of the forecasting models, the data 

(13)TARS � =
(
1 + �2

) PRS ⋅ DRS(
�2 ⋅ PRS

)
+ DRS



 Machine Learning

1 3

of each wind farm were divided into training, validation and test datasets. To forecast the 
wind power generated throughout Germany, real and publicly available wind power data 
and wind speed forecasts were used as well. The wind speed forecasts were aggregated 
to 100 × 85 weather maps covering Germany. Using blocked cross-validation, the dataset 
was divided into 8 different subsets. For each of the 8 subsets, a separate CNN model 
was trained to forecast wind power generation across Germany. To this end, each subset 
was divided into a training, validation, and test dataset. The wind power and wind speed 
data from both the individual wind farm dataset and the Germany dataset had an hourly 
frequency. For more information on both datasets, see Appendices B.1 and B.2.

3.2  Forecasting models

We used an encoder-decoder LSTM (Sutskever et al., 2014) for a multi-step ahead forecast 
of the power generated by individual wind farms, similar to Lu et  al. (2018). First, the 
encoder LSTM network encoded an input sequence consisting of the wind power meas-
urements for the past 12 h into a latent representation. Using the latent representation and 
wind speed predictions for the forecast horizon, the decoder LSTM network then sequen-
tially generated a wind power forecast for the next 8 h with hourly time resolution.

To forecast the wind power generated across Germany, we used the approach of Bosma 
and Nazari (2022). Here, a CNN model was applied to forecast the wind power based on 
weather maps. We used a ResNet-34 (He et  al., 2016) to make an 8-hour forecast with 
hourly resolution for the wind energy generated throughout Germany. This model was 
sequentially applied to the wind speed maps. It forecasted the wind power generation of 
a particular point in time based on the wind speed forecasts for the 5 h leading up to the 
estimation time. The two models are described more detailed in Appendices C.1 and C.2.

3.3  Adversarial robustness evaluation

We investigated the susceptibility of the two forecasting models to adversarial noise 
attacks, as well as untargeted, semi-targeted, and targeted PGD attacks. In all attacks, 
only the standardized wind speeds were manipulated. We considered perturbations with a 
maximum magnitude of � = 0.15 within the L∞ norm ball. Here, � was chosen such that the 
maximum possible perturbation corresponds to a change in wind speed of about 0.5 m/s. 
According to the maximum derivative of a reference wind turbine’s power curve, these 
perturbations should never cause a change in the generated wind power of more than 10% 
of the rated power. The reference wind turbine was an Enercon E-115.2

In the experiments, we examined repeated noise attacks with Gaussian noise and 
100 repetitions. For the PGD attacks, we used T = 100 PGD steps3 with a step size4 of 
� = 2�∕T  . The targeted attacks were generated for a total of 4 different adversarial targets, 
as shown in Fig. 5.

2 The Enercon E-115 was chosen as the reference wind turbine because in 2016, 2017, and 2018, Enercon 
was the market-leading manufacturer in Germany and its most installed turbine type in each of these years 
was the E-115, according to Unnewehr et al. (2021).
3 The number of steps T was chosen such that doubling T does not increase the success rate of the attack, as 
proposed by Carlini et al. (2019).
4 This choice of the step size ensures that the maximum perturbation magnitude � can be reached with the 
number of steps T.
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Among these, 3 targets correspond to various realistic scenarios. They aim to manip-
ulate the model such that either increasing, decreasing, or constant wind power is pre-
dicted. In contrast, the fourth scenario corresponds to a zigzag line. This target was used 
to investigate how arbitrarily the forecasts can be manipulated. In addition, semi-tar-
geted attacks were generated for a total of 4 different lower and upper bound constraints, 
as shown in Fig. 6.

The objective of these constraints is to manipulate the model’s predictions so that the 
forecasted wind power is either in a low, medium, high, or very high range. Furthermore, 
we investigated to what extent the adversarial robustness of the two models can be 
increased with the help of adversarial training. For this purpose, adversarial examples 
were generated in each training iteration by perturbing every training sample using 
the untargeted PGD attack. The above described parameters were used here for the the 
untargeted PGD attack as well. The model was then trained on the adversarial examples 
only.

Fig. 5  Four different adversarial targets considered for the targeted PGD attacks: the prediction of increas-
ing (solid), decreasing (dashed), constant (dotted), and zig-zag shaped (dash-dotted) generated wind power

Fig. 6  Four different constraints considered for the semi-targeted PGD attacks: the forecast has to be 
between 0.75 and 1.0 (horizontal mesh), 0.5 and 0.75 (right diagonal), 0.25 and 0.5 (diagonal mesh), or 
between 0.0 and 0.25 (left diagonal)
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While the robustness of the two models to untargeted attacks was assessed using only 
the PRS, the robustness to semi-targeted and targeted attacks was quantified using all three 
scores (PRS, DRS, and TARS). They were calculated individually for each target and con-
straint of the attacker. This was done by first generating an adversarial example from every 
test sample. Then, the PRS, DRS and TARS were calculated sample-wise. Next, the aver-
age PRS, DRS, and TARS were calculated for each individual test dataset by averaging 
the scores of the respective test samples. Finally, the means and standard deviations of the 
average PRS, DRS and TARS were calculated from the 10 individual wind farm test data-
sets and the 8 Germany test datasets, respectively.

4  Results

4.1  Adversarial robustness of the LSTM model

The forecasting model for wind farms was quite robust to untargeted adversarial attacks 
with � = 0.15 , as Table 1 shows. While the ordinarily trained model achieved an average 
RMSE of 12.90% of installed capacity5 when not under attack, its performance deteriorated 
to an average RMSE of 15.30% when attacked by untargeted PGD attacks. The PRS was 
thus 0.79 in the case of untargeted PGD attacks. Noise attacks had an even lower impact on 
the prediction quality of the model and achieved an average PRS value of 0.96.

Semi-targeted PGD attacks had the highest impact when the constraint required the 
prediction of medium wind power, as shown in Table  2. For this constraint, an aver-
age TARS of 0.78 was obtained for the ordinarily trained model. For the other three 
constraints, the average TARS was 0.79 or more. Thus, the model was robust to semi-
targeted PGD attacks as well.

As shown in Table  3, targeted PGD attacks with � = 0.15 had a similar impact on 
the LSTM forecasting model for all four adversarial targets. Here, the ordinarily trained 
model achieved an average TARS value of 0.86 or greater for each of the attacker’s 
targets. It was thus very robust to this type of attack.

In order to achieve successful targeted PGD attacks on the ordinarily trained fore-
casting model, very strong perturbations of the wind speed time series were required, 
as the example in Fig. 7 shows. Here, the attacked prediction did not closely match the 
attacker’s target until the perturbation magnitude was � = 3.0 . In addition, the perturbed 
wind speed time series often had a shape similar to the shape of the wind power fore-
cast. This indicates that the model’s behavior was physically correct.

Table 1  Mean PRS and RMSE 
values with standard deviation 
for the LSTM forecasting model 
when attacked by noise attacks 
and untargeted PGD attacks

Attack Ordinary training Adversarial training

PRS RMSE [%] PRS RMSE [%]

No attack – 12.90 ± 1.21 – 13.24 ± 1.22
PGD 0.79 ± 0.02 15.30 ± 1.29 0.84 ± 0.02 14.99 ± 1.31
Noise 0.96 ± 0.01 13.01 ± 1.19 0.98 ± 0.00 13.29 ± 1.22

5 In wind power forecasting, it is common to express the RMSE as a percentage of installed capacity. To 
obtain the percentage value, we multiply the RMSE calculated from Eq. 8 by 100, as all wind power meas-
urements in our work are normalized by installed capacity.
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With the help of adversarial training, the model’s robustness to PGD attacks and noise 
attacks could be slightly increased, as shown by the respective PRS values in Table 1 along 
with the TARS values in Tables  2 and 3. However, when not under attack, the forecast 
accuracy of the model slightly deteriorated due to adversarial training. Thus, the average 
RMSE value between the model’s predictions and the ground truth on the test datasets was 
about 12.90% of installed capacity in the case of ordinary training, but 13.24% in the case 
of adversarial training.

4.2  Adversarial robustness of the CNN model

In contrast to the LSTM forecasting model for the wind farms, the CNN model for 
forecasting the wind power generation throughout Germany was very susceptible to PGD 
attacks with � = 0.15 . The average PRS value for untargeted PGD attacks on the ordinarily 
trained model was 0.05, as shown in Table 4. As a result of the untargeted PGD attacks, the 
average RMSE of the model deteriorated from 5.24% of installed capacity to 46.18%. Noise 

Table 2  Mean TARS, DRS, and PRS values with standard deviation for the LSTM forecasting model under 
semi-targeted PGD attacks

Attacker’s constraints Ordinary training Adversarial training

TARS DRS PRS TARS DRS PRS

Low 0.79 ± 0.02 0.81 ± 0.02 0.86 ± 0.02 0.84 ± 0.02 0.84 ± 0.02 0.90 ± 0.02
Medium 0.78 ± 0.02 0.78 ± 0.02 0.86 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.89 ± 0.02
High 0.80 ± 0.02 0.82 ± 0.03 0.86 ± 0.02 0.85 ± 0.03 0.85 ± 0.03 0.90 ± 0.02
Very high 0.84 ± 0.02 0.87 ± 0.02 0.87 ± 0.02 0.88 ± 0.02 0.90 ± 0.02 0.91 ± 0.02

Table 3  Mean TARS, DRS, and PRS values with standard deviation for the LSTM forecasting model when 
attacked by targeted PGD attacks

Attacker’s target Ordinary training Adversarial training

TARS DRS PRS TARS DRS PRS

Increasing 0.89 ± 0.01 0.91 ± 0.01 0.88 ± 0.01 0.92 ± 0.01 0.94 ± 0.01 0.91 ± 0.02
Decreasing 0.90 ± 0.01 0.91 ± 0.01 0.90 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.93 ± 0.02
Constant 0.86 ± 0.02 0.87 ± 0.02 0.88 ± 0.01 0.90 ± 0.02 0.90 ± 0.02 0.91 ± 0.02
Zigzag 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.93 ± 0.02

Table 4  Mean PRS and RMSE 
values with standard deviation 
for the CNN forecasting model 
when attacked by noise attacks 
and untargeted PGD attacks

Attack Ordinary training Adversarial training

PRS RMSE [%] PRS RMSE [%]

No attack – 5.24 ± 1.17 – 6.22 ± 1.53
PGD 0.05 ± 0.04 46.18 ± 10.93 0.82 ± 0.08 7.77 ± 2.08
Noise 0.93 ± 0.04 5.22 ± 1.10 0.99 ± 0.00 6.21 ± 1.55
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attacks resulted in an average PRS of 0.93 for the ordinarily trained model. Thus, they had 
a similarly small impact on the CNN forecasting model as on the LSTM forecasting model.

The ordinarily trained CNN model was also very vulnerable to semi-targeted and 
targeted PGD attacks. For the semi-targeted attacks, the TARS for all four constraints 
was 0.10 or less, as shown in Table 5. As Table 6 shows, the average TARS value for the 
targeted attacks with the increasing target was 0.01. For the zigzag shaped as well as the 
constant and decreasing target of the attacker, the average TARS was even 0.00.

As an example, Fig. 8 shows the impact of a PGD attack with the increasing adversarial 
target on an exemplary prediction. In this case, small perturbations of the weather maps 
had caused the model’s prediction to move close to the attacker’s target. As a result of 
the PGD attack, the wind speeds of the weather maps are both increased and decreased to 
varying degrees. Yet, the maximum perturbation magnitude is always less than 0.5 m/s. 
Although the differences between the perturbed weather maps and the original weather 
maps are visible, they are mostly inconspicuous.

The robustness of the CNN model to PGD attacks could be significantly increased with 
the help of adversarial training. For instance, the average PRS for the untargeted PGD 
attacks was 0.82 when adversarial training was used, see Table 4. For semi-targeted and 
targeted attacks, adversarial training resulted in the average TARS being above 0.46 for all 
the attacker’s constraints and above 0.69 for all the attacker’s targets, see Tables 5 and 6, 
respectively.

As shown in Fig. 9, adversarial training had a positive effect on the robustness of the 
model not only on average, but indeed for most test samples. Thus, in the case of targeted 
PGD attacks, the 75th percentile of the TARS was below 4.49 ⋅ 10−7 for all four of the 
attacker’s targets when the model was trained ordinarily. When adversarial training was 

(a) While the original prediction (dotted) approximates the ground truth (dashed)
very well, the attacked prediction (solid) converges to the attacker’s target (dash-
dotted) with increasing maximum perturbation magnitude

(b) As the perturbation magnitude rises, the perturbed wind speeds (solid) increas-
ingly diverge from the original wind speeds (dotted). In addition, the shapes of the
perturbed wind speeds often resemble the shapes of the attacked predictions in (a)

Fig. 7  Four targeted PGD attacks with maximum perturbation magnitudes � = 0.15 (left), � = 1.0 (center-
left), � = 2.0 (center-right), and � = 3.0 (right) on an exemplary prediction of the LSTM forecasting model. 
The figures show the impact of the attacks on a the wind power forecast and b the input data
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used instead, the 25th percentile of the TARS was above 0.55 for all four targets of the 
attacker. Although adversarial training significantly increased the robustness of the model, 
there still were individual samples for which the targeted PGD attacks were successful. In 
addition, adversarial training had a negative effect on the prediction accuracy of the model 
when not under attack. The average RMSE value between the model’s predictions and the 
ground truth was 5.24% of installed capacity on the test datasets for ordinary training, but 
6.22% for adversarial training.

5  Discussion

In this work, we investigated the adversarial robustness of two different wind power 
forecasting models. We developed the TARS to quantify the robustness of the models 
to targeted and semi-targeted adversarial attacks. Our results show that wind power 
forecasting models which make forecasts for individual wind farms are robust even to 
powerful adversarial attacks. It requires very strong perturbations of the input data to bias 
the model’s predictions toward the attacker’s target. However, these perturbations are such 
that they appear to fit the model’s predictions from a physical point of view. Thus, we 
hypothesize that the model behaves physically correct even in the case of attack.

On the other hand, wind power forecasting models, which use weather maps to produce 
forecasts for entire regions, are very vulnerable to adversarial attacks. Even small and 
barely perceptible perturbations of the input data are sufficient to falsify the forecasts 
almost arbitrarily. We suspect that this is due to the high dimensionality of the input data. 
Forecasting models for individual wind farms process very low-dimensional input data 

Table 5  Mean TARS, DRS, and PRS values with standard deviation for the CNN forecasting model under 
semi-targeted PGD attacks

Attacker’s constraints Ordinary training Adversarial training

TARS DRS PRS TARS DRS PRS

Low 0.10 ± 0.05 0.59 ± 0.15 0.12 ± 0.07 0.67 ± 0.11 0.71 ± 0.09 0.83 ± 0.07
Medium 0.06 ± 0.04 0.18 ± 0.09 0.09 ± 0.06 0.46 ± 0.07 0.54 ± 0.07 0.64 ± 0.10
High 0.01 ± 0.02 0.04 ± 0.06 0.06 ± 0.06 0.61 ± 0.08 0.78 ± 0.07 0.62 ± 0.12
Very high 0.01 ± 0.03 0.06 ± 0.09 0.03 ± 0.06 0.66 ± 0.09 0.89 ± 0.06 0.61 ± 0.11

Table 6  Mean TARS, DRS, and PRS values with standard deviation for the CNN forecasting model when 
attacked by targeted PGD attacks

Attacker’s target Ordinary training Adversarial training

TARS DRS PRS TARS DRS PRS

Increasing 0.01 ± 0.03 0.04 ± 0.07 0.07 ± 0.06 0.71 ± 0.08 0.90 ± 0.03 0.65 ± 0.11
Decreasing 0.00 ± 0.01 0.01 ± 0.02 0.08 ± 0.05 0.77 ± 0.06 0.88 ± 0.03 0.73 ± 0.08
Constant 0.00 ± 0.01 0.01 ± 0.02 0.15 ± 0.10 0.69 ± 0.08 0.85 ± 0.04 0.66 ± 0.12
Zigzag 0.00 ± 0.00 0.00 ± 0.00 0.22 ± 0.08 0.79 ± 0.05 0.85 ± 0.05 0.79 ± 0.05
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(a) While the original pre-
diction (dotted) matches
the ground truth (dashed)
very well, the attacked
prediction (solid) is much
closer to the attacker’s tar-
get (dash-dotted) than to
the ground truth

(b) The original wind speeds used to predict the last time step of the forecast (t = 8)

(c) The wind speeds from (b) with the perturbations caused by the PGD attack

(d) Difference between the perturbed (c) and original (b) wind speeds, i.e., xadv − x

Fig. 8  A targeted PGD attack with perturbation magnitude � = 0.15 on an exemplary prediction of the CNN 
forecasting model. The figures show a the impact of the attack on the wind power forecast as well as b the 
original input data, c the perturbed input data, and d the difference between the original and perturbed input 
data for the last time step of the forecast. All weather maps shown represent wind speeds across Germany in 
the unit m/s
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with only a few relevant features. In contrast, weather maps represent high-dimensional 
data with many features being relevant for large-scale wind power forecasting. This 
assumption is consistent with the study of Chattopadhyay et al. (2019), which showed that 
the generation of adversarial attacks benefits from higher dimensionality of input data in 
the classification setting. Note that the dimensionality of the input data we used is still 
comparatively low. In real applications, such as in Bosma and Nazari (2022), various 
other weather predictions are used besides wind speed forecasts, e.g., predictions for air 
pressure, air temperature, and air humidity. Such input data gives attackers even more 
attack possibilities.

We also studied adversarial training in order to protect the models from attacks. While 
adversarial training exorbitantly increased the robustness of the CNN forecasting model, it 
had only marginal effects on the robustness of the LSTM forecasting model. Adversarial 
training also slightly deteriorated the forecast accuracy of both models when not under 
attack. This finding is consistent with several studies in the classification setting (Tsipras 
et al., 2018; Raghunathan et al., 2019; Zhang et al., 2019), which state that there is a trade-
off between robustness and accuracy. Therefore, an important direction for future work is 
to develop adversarial defenses that do not negatively impact the performance of forecast-
ing models. An alternative approach could be to scale several robust wind power forecasts 
for individual wind farms up to a region, as outlined in Jung and Broadwater (2014). How-
ever, it remains to be examined whether such an upscaling approach for regional forecasts 
is as accurate as forecasts generated from weather maps. Another important direction for 
future work is to extend our method used to generate targeted attacks on forecasting mod-
els. Currently, we select the various adversarial targets very carefully by hand. However, it 
would be desirable to have techniques for automatically generating realistic, application-
specific adversarial targets. Such techniques would allow a more comprehensive robustness 
evaluation.

6  Conclusion

In this study, we have shown that the use of DL for wind power forecasting can pose a secu-
rity risk. In general, our results are relevant for forecasting in power systems, including solar 
power and load flow forecasting, among others. Adversarial attacks also pose a threat to fore-
casting models used in other critical infrastructures, for example, the financial and insurance 
sectors. DL-based forecasting models which obtain input data from safety-critical interfaces 
should therefore always be tested for their vulnerability to adversarial attacks before being 
deployed. In order to appropriately quantify the robustness of such models, we proposed the 

Fig. 9  TARS values of targeted PGD attacks on the CNN forecasting model for the increasing (left), 
decreasing (center-left), constant (center-right), and zigzag (right) target. The boxplots show that in the case 
of ordinary training (orange) the attacks are successful for most test samples. If adversarial training (blue) is 
used instead, the effects of the attacks are significantly reduced (Color figure online)
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Total Adversarial Robustness Score (TARS). In case of high vulnerability, adequate defense 
mechanisms, such as adversarial training, should be used to protect the models from attacks. 
Finally, our work represents a first study of targeted adversarial attacks for DL-based regres-
sion models, and we expect this to be a promising area for future research.

Appendix A Adversarial robustness scores

The following figures are intended to illustrate the behavior of the three evaluation metrics 
TARS, DRS, and PRS. While Fig. 10 shows the evolution of the PRS, Fig. 11 demonstrates 
the behavior of the DRS, and Fig. 12 depicts the trajectory of the TARS.

Fig. 10  Evolution of the PRS for increasing values of RMSE
(
ŷadv, y

)
 , where RMSE (ŷ, y) = 2 (solid), 3 

(dashed) and 4 (dotted). When RMSE
(
ŷadv, y

)
 tends to infinity, the PRS converges to zero

Fig. 11  Evolution of the DRS for decreasing values of RMSE
(
ŷadv, yadv

)
 , where RMSE

(
ŷ, yadv

)
= 2 

(solid), 3 (dashed) and 4 (dotted). When RMSE
(
ŷadv, yadv

)
 tends to zero, the DRS converges to zero as well
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Appendix B Data

In the following, the two datasets used for the experiments in this work are described in 
more detail.

B.1 Dataset on wind power generation from wind farms

For the prediction of the power generation of individual wind farms, we used the publicly 
available6 GEFCom2014 wind forecasting dataset (Hong et al., 2016). This dataset consists 
of normalized wind power measurements from 10 wind farms in Australia. All wind power 
measurements were normalized to the nominal capacity of the respective wind farm and 
therefore took values between 0 and 1. In addition, the dataset contains predictions of the 
zonal wind speed u (wind parallel to latitude) and the meridional wind speed v (wind paral-
lel to longitude) at 100 m above ground for the location of each wind farm. For simplicity, 
we calculated the horizontal wind speed Vh at 100 m above the ground from the zonal and 
meridional wind speeds for our experiments:

Thus, the wind power and wind speed data for the wind farms are each a univariate time 
series. The wind speed data of the wind farms were standardized separately with the 
z-score.7 Hence, the standardized wind speed of each wind farm had a mean of 0 and a 
standard deviation of 1. The data is available for the years 2012 and 2013 with a tempo-
ral resolution of 1 h. For the training and hyperparameter tuning of the LSTM forecasting 

(B1)Vh =
√
u2 + v2

Fig. 12  Trajectory of the TARS � 
with � = 1 for different values of 
PRS and DRS. If either the PRS 
or the DRS take values close to 
zero, the value of the TARS is 
also close to zero. Conversely, 
the value of the TARS is close to 
one only if both the PRS and the 
DRS take values close to one

6 The complete data can be downloaded here: https:// www. dropb ox. com/s/ pqenr r2mcv l0hk9/ GEFCo 
m2014. zip? dl=0.
7 The z-score is a method for normalizing a dataset by transforming its features such that they conform to a 
standard normal distribution with a mean of 0 and a standard deviation of 1. The z-score z of an individual 
datapoint x is calculated by subtracting the mean � of the training dataset from the datapoint and then divid-
ing the result by the standard deviation � of the training dataset, i.e. z = (x − �)∕�.

https://www.dropbox.com/s/pqenrr2mcvl0hk9/GEFCom2014.zip?dl=0
https://www.dropbox.com/s/pqenrr2mcvl0hk9/GEFCom2014.zip?dl=0
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models, the data for each wind farm was split into a training, validation, and test dataset. 
The resulting 10 training datasets each contained data from January 2012 to June 2013, 
with the last week of each quarter used for the corresponding validation dataset. Thus, the 
training data for each wind farm spanned a total of 16.5 months, while the validation data 
covered 6 weeks. The test datasets consisted of data from July 2013 to December 2013. 
The individual data samples were then constructed using a one-step sliding window that 
moved across the hourly values.

B.2 Dataset on wind power generation in Germany

The wind power generated throughout Germany was predicted using wind speed forecasts 
in the form of weather maps. The forecasts for horizontal wind speed at about 100 m above 
the ground were calculated based on the zonal and meridional wind speed forecasts from 
the ICON-EU8 model of the German Meteorological Service (DWD). The wind speed 
forecasts9 had an hourly temporal resolution. They were aggregated to a 100 × 85 grid with 
a spatial resolution of 10 km x 10 km using bilinear interpolation. The grid covered all 
of Germany, and the center of the top left grid cell had the latitude 55.866 and longitude 
3.071. The historical wind power data we used as target values is real and publicly avail-
able, as are the wind speed forecasts. Historical data on onshore wind energy generated 
across Germany were obtained from the website of the European Network of Transmis-
sion System Operators (ENTSO-E).10 The wind power measurements11 were normalized 
by the installed wind power capacity12 in Germany and therefore only took values between 
0 and 1. The dataset covered the period from January 2019 to June 2021. It was divided 
into 8 different subsets using blocked cross-validation. Each subset was further subdivided 
into a training, validation, and test dataset. These were chosen so that there was only a 
50% overlap between successive training datasets and no overlap between test datasets. The 
time periods of the training and test datasets of the 8 cross-validation subsets are shown in 
Table 7.

The last four days of each month of a training dataset were used as the corresponding 
validation dataset. Thus, each training dataset spanned a total of about 5.2 months, while 
the validation datasets covered 24 days each. The eight test datasets contained 3 months 
each. The wind speed predictions of each subset were standardized separately using the 
z-score. Thus, the standardized wind speed predictions of each subset had a mean of 0 and 
a standard deviation of 1. The individual data samples were then constructed using a one-
step sliding window.

8 https:// www. dwd. de/ DWD/ forsc hung/ nwv/ fepub/ icon_ datab ase_ main. pdf.
9 The wind speed forecasts of the DWD in a regular latitude-longitude grid can be downloaded here: 
https:// opend ata. dwd. de/ weath er/ nwp/ icon- eu/.
10 https:// trans paren cy. entsoe. eu.
11 The wind power measurements for Germany can be downloaded here: https:// trans paren cy. entsoe. eu/ 
gener ation/ r2/ actua lGene ratio nPerP roduc tionT ype/ show.
12 The installed wind power capacity for Germany can be downloaded here: https:// trans paren cy. entsoe. eu/ 
gener ation/ r2/ insta lledG enera tionC apaci tyAgg regat ion/ show.

https://www.dwd.de/DWD/forschung/nwv/fepub/icon_database_main.pdf
https://opendata.dwd.de/weather/nwp/icon-eu/
https://transparency.entsoe.eu
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show
https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show
https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show
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Appendix C Forecasting models

In the following, the two wind power forecasting models, whose adversarial robustness was 
investigated in this work, are described in more detail.

C.1 LSTM forecasting model

Similar to Lu et al. (2018), we used an encoder-decoder LSTM (Sutskever et al., 2014) for 
a multistep-ahead prediction of the power generated by individual wind farms. This model 
consisted of an encoder LSTM network and a decoder LSTM network. First, the encoder 
network encoded an input sequence consisting of the wind power measurements for the 
past 12 h into a latent representation. This latent representation was then used to initial-
ize the hidden state and cell state of the decoder network. The decoder then sequentially 
generated a wind power forecast for the next 8 h with a time resolution of one hour. Here, 
the decoder used the wind speed forecast of time t along with the predicted wind power 
of the previous time t − 1 to predict the wind power for time t, where t = 1, ..., 8 . In the 
case where t = 1 , the decoder used the real wind power measurement from the current time 
t = 0 instead of a prediction.

The training and validation datasets of the wind farm in zone 1 of the GEFCom2014 
dataset were used to tune the hyperparameters. The following hyperparameters of the 
model were optimized using the HyperBand method13 (Li et  al., 2017): number of lay-
ers, hidden size, learning rate, and length of the input sequence of wind power measure-
ments for the encoder. We used the asynchronous HyperBand algorithm from Ray Tune 
(Liaw et  al., 2018) with 1000 trials and the default parameter settings. Only the grace 
period was set to 20 to avoid stopping trials too early. After tuning the hyperparameters, 
the encoder network consisted of one LSTM layer with 32 neurons. The decoder network 
also consisted of one LSTM layer with 32 neurons, but followed by a dense layer with one 
neuron and a Leaky ReLU activation function. The loss function used was the MSE loss. 
As optimizer, Adam (Kingma & Ba, 2014) was used. The initial learning rate was 0.01 
and was reduced by a factor of 0.1 each time the validation loss did not improve over 10 
epochs, using a learning rate scheduler. For this purpose, PyTorch’s (Paszke et al., 2019) 

Table 7  The training and test periods of the 8 cross-validation subsets of the dataset used for wind power 
forecasting across Germany

Cross-validation subset Training Test

1 January 2019–June 2019 July 2019–September 2019
2 April 2019–September 2019 October 2019–December 2019
3 July 2019–December 2019 January 2020–March 2020
4 October 2019–March 2020 April 2020–June 2020
5 January 2020–June 2020 July 2020–September 2020
6 April 2020–September 2020 October 2020–December 2020
7 July 2020–December 2020 January 2021–March 2021
8 October 2020–March 2021 April 2021–June 2021

13 HyperBand is a variation of random search that stops low-performing trials at an early stage through 
adaptive resource allocation and early stopping, thus speeding up the search for the optimal hyperparam-
eters (Li et al., 2017).
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ReduceLROnPlateau learning rate scheduler was used with the default parameter settings. 
The maximum number of epochs was constrained to 100. Preliminary experiments have 
shown that this number is sufficient for convergence of the model’s training. In addition, 
early stopping was used to stop the training as soon as the validation loss did not improve 
within 15 epochs. Here, the EarlyStopping callback from PyTorch Lightning (Falcon et al., 
2019) was used with the default parameter settings. Only the patience parameter was cho-
sen as 15 epochs, since this improved the model’s performance in preliminary experiments.

C.2 CNN forecasting model

A new approach for forecasting the generated wind power in large-scale regions was 
proposed by Bosma and Nazari (2022). In this approach, the problem of wind power 
forecasting is divided into two distinct subproblems, each of which is solved separately. 
The first step consists of generating very accurate weather forecasts using a suitable 
weather prediction model. The second step then consists of generating the wind power 
forecast using the weather forecasts. For this purpose, a separate power estimation model 
is applied to estimate the wind power for a future point in time using the predicted weather 
maps for that point in time and previous points in time.

We used this approach in order to make an 8 h forecast with one-hour resolution for 
the wind energy generated throughout Germany. To make a forecast for time t, the model 
received a stack of 5 weather maps as input. These consisted of the forecasts for the hori-
zontal wind speed at 100 m above ground level for the 5 h leading up to the estimation 
time, i.e., points in time t − 4, ..., t . Here, the wind speed prediction of each point in time 
represented a separate channel. Thus, the dimension of the input data for a prediction for 
time t was 5 × 100 × 85 (channels × pixel height × pixel width). For estimating the wind 
power based on the 5 weather maps, we used a ResNet-34 (He et al., 2016), followed by 
a dense layer with one neuron and a Leaky ReLU activation function in the output layer. 
This model was then sequentially applied to the input data and estimated the generated 
wind power step-by-step for points in time t = 1, ..., 8 . For training the model, MSE loss 
was used. As optimizer we used Adam. The maximum number of epochs was limited to 
100. Preliminary experiments have shown that this number is sufficient for convergence 
of the model’s training. The initial learning rate was 0.001, which is the default value of 
PyTorch’s (Paszke et al., 2019) Adam optimizer. It was reduced by a factor of 0.1 each time 
the validation loss did not improve within 10 epochs. For the CNN model, we used early 
stopping and the ReduceLROnPlateau learning rate scheduler in the same way as for the 
LSTM model, see Sect. C.1 for a detailed description.
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