
The 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications

22-25 September, 2021, Cracow, Poland

A SIEM Architecture for Multidimensional

Anomaly Detection

Tim Laue1, Carsten Kleiner1, Kai-Oliver Detken2, Timo Klecker2
1 University of Applied Sciences and Arts of Hanover, Ricklinger Stadtweg 120, D-30459 Hanover

{tim.laue/carsten.kleiner}@hs-hannover.de, https://www.hs-hannover.de
2 DECOIT® GmbH, Fahrenheitstraße 9, D-28359 Bremen,

{detken/klecker}@decoit.de, https://www.decoit.de

In recent years businesses and organizations have

experienced an increase in the occurrence of IT-security

related threats, causing the compromise of sensitive

information, disruption of everyday operations, and

ultimately financial damage. Meanwhile, these attacks have

become more varied and sophisticated, making them

increasingly hard to detect. In order to address these issues

we initiated the GLACIER1-project [1]. As a part of the

project we created an architecture, which can be realized as

an in-house operated SIEM system for SMEs. In addition to

SIEM-specific tasks like network data collection,

normalization, enrichment and storage, the systems main

purpose is to supply data to advanced multidimensional

analysis algorithms. These provide a novel way to reliably

detect security-related anomalies. Found anomalies are

displayed in a GUI, which allows giving feedback for tuning

the anomaly detection algorithm, while also providing access

to network actors for quick incidence responses. The

architecture can be implemented using exclusively free,

open-source components and is suitable for both

information technology (IT) and operational technology

(OT) environments.

Keywords: SIEM, intrusion detection, security

architecture, multi-dimensional data, anaomaly detection,

open source, security

I. INTRODUCTION

The increasing integration of traditional IT

components and production/control systems (operational

technology, OT) creates new risks that companies have to

face. So, in addition to state-of-the-art security systems

such as firewalls and malware protection, log and

monitoring systems are becoming increasingly important.

This is because every company must assume that

professional attackers can overcome the existing perimeter

protection with appropriate effort and that the malicious

code used is not always reliably detected. The number and

complexity of cyber-attacks is constantly increasing, as a

BITKOM study [2] has shown. According to this study,

70% of the German economy is affected by digital attacks,

compared to 43% two years ago. Sensitive data has been

stolen from one in five companies, although leaks like

1 GLACIER = Attack detection through multidimensional analysis of

security-relevant data streams

these can probably not always be detected, so the number

of unreported cases will likely be higher. This is because

most companies have not established sufficient IDS/IPS or

SIEM systems yet.

The intrusion of an attacker can only be detected

through unusual system or application behavior and

abnormal network communication. However, detection

typically also requires that the data from different systems

be aggregated and correlated in an analysis system. The

large data volumes involved pose particular challenges.

Due to the poor availability of current test data sets, new

solutions cannot be evaluated comprehensively, which

makes it massively more difficult to compare algorithms

and products. The lack of sufficient data sets also leads to

the fact that learned models for anomaly detection are not

transferable. In addition, attack scenarios continue to

evolve, making the definition of the attack class obsolete.

Some attacks can take months to unfold. They are also

difficult to model. The problems for intrusion detection

systems (IDS) outlined in [3] can therefore be generalized

to the detection of security incidents.

The goal of a SIEM system, on the other hand, should

be to be able to correlate protocols from heterogeneous

sources in order to provide the Security Operation Center

(SOC) staff with a holistic network overview. They should

therefore be regarded as a further development of

conventional IDS/IPS systems. In order to prevent them

from suffering the same niche existence as their

predecessors, the focus should be on user-friendliness and

the detection of relevant anomalies. It is precisely the

number of ”false positives” in IDS/IPS systems that has

led to them being used relatively little in today’s

companies. However, since anomaly detection is currently

still signature-based in most cases, new types of attacks

are often noticed too late or not at all. Signature-based

approaches determine anomalies by observing well-

known attack scenarios (signatures) and are thus not

capable of detecting previously unknown attack types.

The GLACIER project tries to address all of the

aforementioned in an integrated system. In particular it

will provide the following features:

a. Unification and consolidation of log information

b. Horizontal scalability

c. Anomaly detection for automated intrusion

detection

d. Development of novel multidimensional anomaly

detection algorithms

e. Visualization of the anomaly results

II. RELEATED WORK

In the field of IT security, research has long been

conducted on intrusion detection systems (IDS), which

examine network data and recognize attack patterns [4]. A

distinction can mainly be made between signature-based

and anomaly-based methods. Signatures are limited to

previously known and recorded attack scenarios, while

anomaly-based methods analyse normal behaviour and

detect deviations, and can thus also detect previously

unknown attacks [5]. However, anomaly-based methods

usually have the disadvantage of producing a high number

of false positives.

However, it has long been clear that a more

comprehensive view of all security-relevant data is

necessary in order to be able to identify more complex

threat scenarios. SIEM systems are used for this purpose,

which perform precisely this data integration and

evaluation. Static rules or anomaly detection can also be

used at this level. In contrast to IDS, SIEM must generally

be able to handle much more heterogeneous data and

larger data volumes [6]. There are already several

publications (e.g. [7], [8], [9]) that use standard data

mining methods such as cluster analysis to improve attack

detection. However, they all have in common that they all

start from the homogeneous database of an IDS system

and cannot be applied to heterogeneous data, as is the case

in SIEM-like systems.

Independently of the application in IT security,

research has long been conducted on concepts for

anomaly detection, see e.g. [10]. In addition to the basic

techniques, we are particularly interested in methods that

can detect contextual or collective anomalies (see [11]).

An example is the star-cubing method presented in [12],

which efficiently calculates all cube cells that exceed a

certain threshold value. However, these methods must also

be able to be used in data streams and must be efficient

enough to enable online detection of incidents.

Furthermore, the cells of a cube can also be interpreted as

time series, which means that suitable methods for time

series anomaly detection (see [13]) can be applied to

different groupings of data. The multidimensional

anaomaly detection methods used in this project are based

on the algorithm in [20].

In the OLAP environment, there are also various

studies on the multidimensional visualization of data

cubes [14] [15] [16], mostly using established methods for

the visualization of multivariate data, such as scatter plots,

radar charts or parallel coordinates. The challenge in the

GLACIER project is therefore on the one hand to present

multidimensional data from time-dependent data streams

in a comprehensible way, and on the other hand to find

visualization approaches that take into account the mental

models of security analysts. Publications that apply the

above advanced representations to network security data

are hard to find so far. Especially the combination with the

previously mentioned views has not been researched yet.

The market for commercial products offers a variety of

options in the SIEM area. As the manufacturers of

commercial systems have also recognized that systems

with fixed rules and regulations (first generation SIEM)

are too inflexible and too personnel-intensive in

maintenance and development from the customer’s point

of view, the following section looks at systems and

services related to modern SIEM systems (second

generation SIEM) grouped by properties / methods used:

a. Static sets of rules maintained by the provider that

compare against dynamic lists of suspicious

objects (e.g. IP addresses, URLs, hashes of binary

code), e.g. IBM QRadar SIEM, Tenable LCE and

McAfee Enterprise Security SIEM. The sets of

rules are renewed in the course of updates, e.g.

monthly, the dynamic lists much more frequently.

The lists of suspicious objects or the behavior

patterns depicted in the rules (”threat

intelligence”) are obtained by the manufacturers

through a wide variety of methods (e.g. manual

searches, honeypots, statistical analyses across

several customers, analysis of unstructured texts

such as postings in darknet).

b. Statistical time series analysis of individual

metrics (e.g. user numbers, network bandwidth) to

determine the development over time as a ”normal

state”, dynamically update it and then detect

significant deviations. The monitored metrics

(numerical values) and threshold values for

deviations must be defined by the IT

administrator. This capability is found in many

commercial products, including IBM QRadar

SIEM.

c. User and Entity Behavior Analysis (UEBA)

creates models of normal behavior for individual

users or components such as IP addresses, servers,

applications by means of statistical analysis or

learning methods in order to detect deviations.

According to the Gartner analysis [17], machine

learning methods (supervised / unsupervised ML)

are increasingly used in addition to rule-based and

statistical approaches. These techniques are used

in several products (e.g. IBM QRadar UBA App,

LogRhythm UEBA, ArcSight UBA, DarkTrace

Enterprise.

GLACIER is looking in detail at the third option for

developing an open source based SIEM solution.

III. APPROACH

This section will present a description of the

architecture and how it achieves the goals outlined in

section 1, leading with an overview of the architecture,

followed by detailed descriptions of its individual parts.

Whenever there is a planned implementation for a concept

or component it will be mentioned accordingly.

The architecture ensures horizontal scalability by

designing each component (excluding GUIs) to be suitable

for containerization, which we intend to realize using

Docker. In the graphics rounded rectangles depict

components that run inside Docker. Layered rounded

rectangles indicate that there are multiple parallel

implementations of the component. Dotted rectangles

denote data flow between components, while control flow

is mostly omitted. If control flow is shown it is

represented by dotted ellipses.

A. Overview

This section presents an overview of GLACIER major

component groups, as well as the surrounding systems,

and their interaction with each other. They are visualized

in figure 1.

Figure 1. Overview of component groups of the GLACIER

architecture

In Data Collection heterogeneous data is gathered

from Dynamic Sources and consolidated as necessary for

security analysis. These sources can be any network

component that produces events suitable for monitoring,

like hosts, firewalls or OT components. Events are

normalized to a common format, enriched and archived.

During enrichment the system utilizes context information

from Static Sources, like LDAP servers, CMDBs or IP

geolocation services. Archived data can be viewed using

the Audit GUI.

Enriched data is forwarded to Data Analysis, where it

is analyzed for anomalies. These can be visualized in the

SIEM GUI, alongside training data and learned models.

The GUI also allows giving feedback to the analysis

algorithms and gives users ways to immediately react to

incidents by engaging Actors in the network, like NAC

interfaces or CVE scanners. In addition, Automatic Actors

can be triggered, e.g. to send notifications to security staff

without user involvement.

All GLACIER components are configured and

supervised by the management. In addition to

administration, the Management GUI allows using the

Replay functionality to recreate previously encountered

situations in the network by replaying events. This part of

GLACIER will not be included in the final version of the

system, since it mostly serves conducting experiments to

evaluate the performance of the data processing chain and

the analysis algorithms.

B. Data Collection

This section will describe the components of the data

collection group, as shown in figure 2. The components in

this part of the system collect event data from different

points in the network, pre-process and archive it, and

finally pass it on to data analysis.

At many points within the architecture Brokers are

used to buffer events messages in order to decouple

different stages of data processing, thus enabling

horizontal scalability. These brokers do not necessarily

run in separate containers, instead they will probably be

realized as different topics in the same RabbitMQ

instance. The message queues within the brokers hold

their messages in memory to keep throughput as high as

possible, unless they are flagged as important, in which

case they will be stored to disc as well.

Archivers are components that insert data into

databases. For each new insertion they test whether the

data is already present and overwrite it if it is. This

behaviour is different for the Raw Archiver, which has to

avoid overwriting enriched events with their raw

counterparts in the archive.

Figure 2. Components of the data collection process

Each dynamic source has an Agent collecting and

forwarding its data, converting any non-textual data to a

text based, structured format in the process. This format

will be JSON, however at this stage the JSON objects will

be mostly flat, with most of the effort to structure them

will be concentrated at the normalization stage. Agents

can be actively polling for data or passively receiving it,

depending on the source type. They will also summarize

discard certain events according to configuration to

minimize the load on the system at the source. To guide

the normalization process, agents append their own type to

events.

The Raw Filter gathers the raw events produced by the

agents, giving each event an ID which uniquely identifies

it across the remainder of the system. Additionally it

provides a second opportunity for filtering the event

stream. Most notably it holds a whitelist of agents known

to the system, discarding events stemming from

unregistered sources.

Each agent, or agent type, has a Normalizer tasked

with transforming its JSON output into a common format,

thereby integrating data from all sources, while enforcing

data quality constraints. We intend to use the Elastic

Common Schema (ECS) for this purpose. Each normalizer

appends its on type and a timestamp to the normalized

event to make the normalization process reversible and

repeatable, which is useful when normalizers or the data

format are changed or when errors occur in the process.

The Enricher fetches context information (i.e. user

related data from ldap or ad, dns information or ip/mac

relation) and attaches it to events, which serves both

completing the attribute list of events and creating

dimensional hierarchies on top of some of these attributes.

Similar to the normalizers it appends information about

the enrichment process to event to make it repeatable.

To reduce the load on static sources, enrichers store

the most recent history of context data they retrieve in the

Cache. This cache will be implemented as a Redis

instance. In the case that events need to be filtered out

before analysis on the basis of information that is

available only after enrichment, the Enriched Filter can be

configured to do so.

The Asset Listener gathers enriched event data and

infers a list of active assets in the network, which are then

forwarded to the analysis database for display in the SIEM

GUI. Long term storage of events is handled by the

Archive. It stores all events passing through the system,

both in raw format and after enrichment and will be

realized as an ElasticSearch instance.

The data in the archive can be viewed using the Audit

GUI. This can serve for compliance, forensics or simply

for double checking analysis results. Kibana, being the

part of the ELK stack, is a natural choice for an

implementation.

C. Data Analysis

The components in this part of the system are tasked

with analyzing the gathered events for anomalies and

presenting them to users. This component group is

displayed in figure 3.

Events enter the data analysis chain through the Event

Store. This database contains a relatively short history of

fully enriched events and offers high-bandwidth access for

near real-time analysis. This database will be realized

using ElasticSearch as well.

The Event Store Cleaner is an active component for

deleting any entries in the event store that lie outside the

desired time window for analysis. Any data surrounding

data analysis results is stored in the Analysis Database. It

will be implemented using PostgreSQL.

The component responsible for finding anomalies in

the event stream, as well as hosting experiments with

anomaly detection algorithms, is the Analysis Engine.

Found anomalies are assigned an anomaly score and an

ID, and are treated as incidents in the later parts of data

analysis. A notification is sent for each incident to trigger

automatic actors. Additionally, a flag in each event is read

on input to determine whether it represents an incident

independently, like for example antivirus software

notifications. The analysis engine utilizes novel machine

learning algorithms, which use OLAP cubes as underlying

data structure. So in order to analyze events, they are first

separated into time slices and aggregated to cubes.

Machine learning models, cubed training and inference

data and user feedback are stored in the analysis database

and retrieved if needed. This is required especially in the

case that the models need to be retrained on updated

training data or new feedback.

Figure 3. Components of the data analysis chain

The Post Processor takes incident data produced by

the analysis engine and enriches it for display in the SIEM

GUI, which is partly achieved by querying the archive

database and by incorporating user feedback. Fully

processed incidents are stored in the analysis database.

Incidents are visualized in the SIEM GUI. In addition

to showing the information describing an incident, it is

possible to access related incidents, i.e. incidents that

share at least one attribute value with one another. This

can be cross-referenced with a visualization of network

assets, which is built from the asset data provided by the

asset listener. The GUI gives users recommendations for

reacting incidents and access to actors which carry out the

reactions, for example by moving a host to quarantine.

Users can also give feedback to the analysis engine on

each incident, which can include adjusting the anomaly

score to a desired value or tagging incidents with labels

which will be shown as descriptive text on similar

incidents in the future. The history of actions users take in

conjunction with an incident are stored as a ticket in the

analysis database.

IV. USE CASES

For Use Cases there can be different actors with

different requirements for a system. For example, systems

with different authorization levels can distinguish between

administrators and users who can perform disjoint actions

and would therefore have completely different use cases.

In the system used here, a distinction into different actors

within a company does not seem to make sense, since the

users can always perform the same actions. Only the goals

of the system can differ, but it can be assumed that the

overlaps are so strong that no further distinction is

necessary. An example would be the use of the system by

an experienced administrator and a rather inexperienced

administrator. Due to the self-learning GUI, the actual use

of the interface might differ, but the requirements for the

system do not differ significantly. The use cases cover the

use of the system, advantages of using the system and

economic aspects. They result from the following

requirements:

a. Fulfill security requirements in order to be

legally secure

b. Take IT security measures quickly and easily

with low costs and little know-how

c. Detect threats to remove vulnerabilities

d. Perform active scans to assess the current threat

situation

e. Carry out passive monitoring in order to be

alerted to dangers and be able to react

f. Access historical events to create and evaluate

statistics

g. Resource-saving monitoring so as not to

influence the stability and speed of the network

h. Perform quick scans to investigate current threats

on the network or to initiate investigations in

case of a specific incident

i. Continuous monitoring to detect long-term

threats

j. Easy to understand and use GUI to quickly

identify risks and changes

k. Central control and coordination function to

minimize the support effort

l. Aggregate information to understand risks,

incidents and vulnerabilities

m. Generate understandable recommendations for

action so that you can immediately decide how to

react to an incident

n. Useability in OT and/or IT networks

o. Receive regular reports to assess the current

status and compare it with older reports

p. Respond promptly to threats to meet security

requirements

The requirements thus describe the behavior of the

system in an abstract way without dealing with technical

aspects. From these, however, the following technical use

cases could be defined:

a. Use Case 1: Definition of communication rules

(hosts, networks, time restrictions) for detecting

violations

b. Use Case 2: Analysis of logs (Windows event

logs and syslog)

c. Use Case 3: File integrity monitoring (access via

SSH or agents on the corresponding system)

d. Use Case 4: Detection of failed SSH logins

e. Use Case 5: Vulnerability Scan

f. Use Case 6: Malware detection in network

communication

g. Use Case 7: Login attempts on Windows server

systems

h. Use Case 8: Detecting new network connections

i. Use Case 9: Detecting new protocols within the

network

These user scenarios originate from associated

partners of the GLACIER project and were compiled in

the course of the analysis of the current state and

requirements definition. The GLACIER architecture lives

from the multitude of its use case scenarios. The more

scenarios are implemented, the more incidents can be

detected and displayed in the SIEM-GUI.

At this point as a practical example use case 6

(malware detection) shall be detailed in order to illustrate

the feasibility of implementation of this use case and at the

same time motivate the GLACIER system architecture as

presented earlier in this chapter.

Malware Detection in network communication has

already been implemented in several products. However,

most of these systems attempt to identify malware by

matching the actual network traffic with well-known

malware attack patterns. This approach works well for

known attacks, however it will never be able to identify

previously unknown and thus new kinds of attacks. From

a risk perspective such novel attacks constitute the most

dangerous type of attack and thus high priority should be

given to detect those. In the GLACIER system such novel

attack types shall be identified by realizing them as

deviations from the regular system behavior, in this case

network communication. For this purpose, the system

needs to be able to learn the regular system behavior over

a period of time and then a near real-time check for

deviations can be realized.

In terms of the high-level architecture of figure 1 the

Data Analysis component will be responsible for learning

the regular system behavior as well as for the online

detection of deviations. In order to learn the regular

system behavior as fast as possible, the Replay component

can be used to feed the system with historical records of

observed system usage patterns faster than in real time so

that the Analysis component can learn the patterns fast.

Technically, this is implemented by feeding the historical

usage data into the Data Collection component and

propagating those to the Analysis component as if they

were actual records. In order to be able to use the learned

regular behavior to detect deviations the actual network

usage data is observed and consolidated in the Data

Collection component and then forwarded to the analysis

component for detection.

Looking into more detail into the Data Collection

component for this use case (cf. fig. 2) there will be a need

to use static information about the network (e. g. user

related information from LDAP) to be monitored as well

as dynamic information (e. g. actual network connections

and flows) in order to both learn the regular behavior and

detect deviations. Most important are dynamic data

sources that provide basic information about the current

usage of the network, e. g. a login event to a specific

machine. Based on log information provided by the

sources events can be forwarded to the Replay component

to record them for future training phases. If the system is

in detection mode, these events can be filtered for

relevance in order to reduce the load on the analysis

component, e. g. information for unimportant machines

might be dropped here. After normalizing the remaining

events into a unified format suitable for the analysis

component, the events might be enriched. Static data is

fed into the system via the Enricher which is able to

correlate this information with dynamic events. This

might be required to match actual login events with the

(static) priority of the user on that machine.

Enriched events with such static information can

thereafter be forwarded to the analysis component by

means of the Event Store Broker which provides them to

the Asset Listener to be supplied to the Event Store (cf.

fig. 3) which is the foundation for the Analysis Engine.

The Analysis Engine can now check individual events or

groups of events against the regular system behavior

learned earlier and stored in the analysis database in order

to detect potential abnormalities. In case potential issues

have been detected, e. g. login and external data transfer

from a server that is usually only accessed internally, the

engine will create an Incident since a potential malware

attack has been detected which needs to be either

examined further by a knowledgeable security operator

via the SIEM GUI or requires automated processing (e. g.

disconnection the server from the public network) by

Automated Actors. In addition, the SIEM GUI can be used

to collect feedback regarding the quality of the message

created with this incident in order to continuously improve

the analysis component.

In order to learn the regular system behavior initially,

raw events can be propagated to the management and

replay component for a certain amount of time to be

stored in the Replay Archive (cf. fig. 4). After sufficient

data collection of raw events to be able to describe system

behavior properly, the data set stored in the Replay

Archive can be used to start training a new

multidimensional system behavior model from the

Management GUI with help of the Replay Controller. In

this case, the analysis component is not used for actual

detection but to learn the regular system behavior. The

data processing pipeline, however, is similar to the

detection case detailed above.

As a conclusion, other use cases can be handled by the

system in a similar manner. To cover a wide spectrum of

use cases the model for regular system behavior should be

as diverse and specific as possible. This requires many

different data sources for events to be integrated in the

collection component explaining the need for a highly

scalable architecture at this end.

V. RESULTS OF EXPERIMENTS

To validate the developed architecture, tests were carried

out in a real company environment. On the one hand,

these tests served to perform functionality tests and, on

the other hand, to minimize possible programming errors.

In addition, the anomaly detection could be tested for its

efficiency. Figure 4 shows the setup in the company

network.

Figure 4. Test network structure

The tests were performed according to a specific scheme

in order to obtain unambiguous results:

a. Running the installation script

b. Creating networks for asset management

c. Starting an vulnerability scan

d. Monitoring the components of availability

e. Collecting data using intrusion detection

component

f. Starting the analysis engine (one week later)

g. Adjusting settings for the analysis algorithm and

restarting with new training data from an entire

week

h. Improving the analysis and restarting with

training data from four weeks

i. Test of static analysis (define rules and create

rule violations)

The results can be sorted into different categories:

analysis engine, static analysis, vulnerability scan, and

asset management.

In the Analysis Engine, the statements of most tickets

refered to unusually high or low data traffic at certain

times. Currently, there are still relatively many

anomalies. This can be corrected with more training data

and other settings. Furthermore, the Static Analysis still

generates too many duplicate incidents (tickets). For

example, a connection to an IP address was not allowed,

which was specified via a rule. Instead of generating only

one incident, 70 tickets were written during the tests.

Additionally, the vulnerability analysis generated tickets

that point to CVE vulnerabilities. All CVE vulnerabilities

that were known were found. All of them were non-

critical. Asset Management successfully captured the

assets in the network. The ports and protocols used were

shown per asset. Tickets referenced the assets found and

could be used to track anomalies.

Overall, the tests showed that the SIEM architecture

worked with the self-developed analysis engine well

enough. However, too many tickets were still generated,

which is an area for improvement. Also, duplicate tickets

should be avoided in the future by means of adding a

duplicate detection mechanism early on. In addition, it is

also necessary to keep in mind the amount of data

generated, which is necessary for the analysis. This is

particularly important as data traffic will grow faster with

usage of more advanced hardware components in the

future.

VI. CONCLUSIONS

The architecture presented in the previous section will

provide the required features for security-based anomaly

detection in IT and OT environments as presented in

section 1. For the data collection chain a vertical subset of

the planned components has already been completed,

yielding valuable insights for realizing the remaining ones.

In particular, to improve anomaly detection results, more

sensors have to be added to the system to provide further

options for describing the normal system state and in

consequence analyze potential deviations. This is true for

both office as well as industrial settings.

In the data analysis component group the focus in

future developments will be on improving the analysis

engine at its core. An initial version of the analysis engine

has already been implemented that uses multidimensional

cube-based analysis of data to detect anomalies similar to

the algorithm in [20]. This component has to be extended

and adapted to different event types, particularly for

industrial scenarios, and also the analysis algorithms need

to be improved. A systematic evaluation of the algorithms

on a rich set of event types in traditional IT environments

is required for this. More realistic and comprehensive

training data sets will also be essential for improving the

analysis component.

In summary, we can conclude that the suggested

system architecture is a good step forward towards

achieving a security incident analysis system which can

flexibly adjust to changing system behaviour due to its

anomaly detection based approach. By integrating

information from an arbitrarily wide range of input

sensors and by using novel multidimensional anomaly

detection algorithms the system is able to detect

modifications that could not have been detected

previously. In addition the systems ability to be scaled

horizontally facilitates analysis of very large sets of input

data. Finally, the SIEM GUI can display complex analysis

results as well as context data to security operators in an

easy-to-use manner, thereby helping them to address

threats effectively.

ACKNOWLEDGMENT

The authors would like to thank the German Federal

Ministry of Education and Research (BMBF) [18] for the

financial support as well as all other partners involved in

the research project GLACIER for their great

collaboration. The project consists of the industrial

partners rt-solutions.de GmbH, DECOIT® GmbH, and the

research partner University of Applied Sciences and Arts

of Hanover with the security group Trust@HSH. A

special appreciation goes to the associated partner

hanseWasser GmbH for its support and the possibility of

prototype testing in their IT and OT infrastructure.

REFERENCES

[1] GLACIER project website: https://www.glacier-project.de.

[2] Michael Fiedler: Cyberangriffe: dramatische Zunahme und
Rekordschäden. procontra-online.de, Alsterspree Verlag GmbH,

Berlin, 15.11.2019, accessed: 2021-04-23.

[3] R. Zuech, T. M. Khoshgoftaar, and R. Wald: Intrusion detection
and Big Heterogeneous Data: a Survey. Journal of Big Data, vol.

2, no. 1, p. 3, 2 2015.

[4] H.-J. Liao, C.-H. R. Lin], Y.-C. Lin, and K.-Y. Tung: Intrusion
detection system: A comprehensive review. Journal of Network

and Computer Applications, vol. 36, no. 1, pp. 16–24, 2013.
[5] Y. Yu: A survey of anomaly intrusion detection techniques. J.

Comput. Sci. Coll., vol. 28, no. 1, p. 9–17, 10 2012.

[6] R. Zuech, T. M. Khoshgoftaar, and R. Wald: Intrusion detection
and Big Heterogeneous Data: a Survey. Journal of Big Data, vol.

2, no. 1, p. 3, 2 2015.

[7] Z. Qu and X. Wang: Study of rough set and clustering algorithm
in network security management. in 2009 International Conference

on Networks Security, Wireless Communications and Trusted

Computing, vol. 1, 2009, pp. 326–329.
[8] X. Li, X. Zheng, J. Li, and S. Wang: Frequent itemsets mining in

network traffic data. Proceedings - 2012 5th International

Conference on Intelligent Computation Technology and
Automation, ICICTA 2012, 01 2012.

[9] M. A. Jabbar, R. Aluvalu, and S. S. S. Reddy: Cluster based

ensemble classification for intrusion detection system. in
Proceedings of the 9th International Conference on Machine

Learning and Computing, ser. ICMLC 2017. New York, NY,

USA: Association for Computing Machinery, 2017, p. 253–257.
[10] C. C. Aggarwal: Outlier Analysis. in Data Mining: The Textbook.

Cham: Springer International Publishing, 2015, pp. 237–263.

[11] V. Chandola, A. Banerjee, and V. Kumar: Anomaly detection: A
survey. ACM Comput. Surv., vol. 41, 07 2009.

[12] D. Xin, J. Han, X. Li, Z. Shao, and B. W. Wah: Computing

iceberg cubes by top-down and bottom-up integration: The
starcubing approach. IEEE Transactions on Knowledge and Data

Engineering, vol. 19, no. 1, pp. 111–126, 2007.

[13] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han: Outlier detection
for temporal data. in Synthesis Lectures on Data Mining and

Knowledge Discovery, Vol. 5, No. 1, 3 2014, pp. 1–129.

[14] A. S. Maniatis, P. Vassiliadis, S. Skiadopoulos, and Y. Vassiliou:
Advanced visualization for olap. in Proceedings of the 6th ACM

International Workshop on Data Warehousing and OLAP, ser.

DOLAP ’03. New York, NY, USA: Association for Computing
Machinery, 2003, p. 9–16.

[15] C. Stolte, D. Tang, and P. Hanrahan: Multiscale visualization

using data cubes. Visualization and Computer Graphics, IEEE
Transactions on, vol. 9, pp. 176– 187, 05 2003.

[16] C. Ordonez, Z. Chen, and J. Garc´ıa-Garc´ıa: Interactive

exploration and visualization of olap cubes. in Proceedings of the
ACM 14th International Workshop on Data Warehousing and

OLAP, ser. DOLAP ’11. New York, NY, USA: Association for

Computing Machinery, 2011, p. 83–88.
[17] G. Sadowski, A. Litan, T. Bussa, and T. Phillips: Gartner market

guide for user and entity behavior analytics.

https://www.gartner.com/doc/3872885/market-guide-user-entity-
behavior, 04 2018, accessed: 2020-04-23.

[18] Federal Ministry of Education and Research (BMBF):

https://www.bmbf.de.
[19] Hamolia, V., Melnyk, V., Zhezhnych, P., & Shilinh, A. (2020).

Intrusion Detection in Computer Networks using Latent Space
Representation and Machine Learning. International Journal of

Computing, 19(3), 442-448. https://doi.org/10.47839/ijc.19.3.1893

[20] Heine F. (2017) Outlier Detection in Data Streams Using OLAP
Cubes. In: Kirikova M. et al. (eds) New Trends in Databases and

Information Systems. ADBIS 2017. Communications in Computer

and Information Science, vol 767. Springer, Cham

